|
燕麦农艺性状与产量多元回归分析 |
Multiple regression analysis of agronomic characters and yield of Oat |
投稿时间:2023-05-09 修订日期:2023-05-09 |
DOI: |
中文关键词: 燕麦 多元线性回归分析 产量 |
英文关键词: Oat Multiple linear regression analysis Yield |
基金项目:2021现代丝路寒旱农业科技支撑计划(项目编号:GSLK-2021-5)课题:草畜生态循环生产技术示范;甘肃省农业科学院“三百”行动增产增收计划(项目编号:2017GAAS-SBXD06)。 |
|
摘要点击次数: 149 |
全文下载次数: 79 |
中文摘要: |
为了筛选出适应旱作农业区推广的燕麦(Avena sativa L.)品种,对引进的3个燕麦品种进行生产能力测定。对影响燕麦产量的指标间采用多元线性回归分析法建立多元线性回归方程。结果表明,燕麦产量的最优回归方程为:y=17.923+247.222x1+8.274x3+127.316x7-
12.463x10,从相关系数大小得知,影响大小次序为:品种>株高>茎节数>小穗数。最优回归方程表明:燕麦的产量与其株高(x3)、茎节数(x7)、品种(x1)、小穗数(x10)密切相关。 |
英文摘要: |
In order to screen out Avena sativa L. varieties suitable for promotion in dry farming area, the production capacity of three introduced oat varieties were determined. The multiple linear regression equation was established by the multiple linear regression analysis method among the indexes affecting oat yield. The results showed that the optimal regression equation of oat yield was y=17.923+247.222x1+8.274x3+127.316x7-12.463x10, According to the correlation coefficient, the order of influence was variety > plant height > number of stem nodes > number of spikelets. The optimal regression equation showed that the yield of oat was closely related to plant height (x3), number of stem nodes (x7), variety (x1) and spikelet number (x10). |
查看全文
查看/发表评论 下载PDF阅读器 |
关闭 |